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CATALYSIS OF THE MICHAEL REACTION
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Abstract : Two nearly equivalent procedures have been evolved for catalysis of the
Michael reaction : (i) potassium t-butoxide deposited on xonotlite; and (ii) alumina-
supported potassium fluoride. These catalysts will undergo 150+ turnovers and enable

Michael additions to be run at room temperature or below in good yields.

MICHAEL reactions form a new C-C bond between a carbanionic donor synthon d and an
acceptor synthon a : the latter, an activated olefin, is typically an «,g-unsaturated
ketone, which makes the addition vinylogous to aldol addition. Hence, an even number of
interposed carbons separate the nucleophile and the electrophile. During the course of
the reaction, electronic charge migrates from carbon in the donor to a better acceptor
atom, usually oxygen, in the electrophile. A sufficiently stabilized carbanion is
required : base serves to form the donor from the activated methylene precursor. The
importance of Michael additions stems also from their being component parts of Robinson

1-3

annelations Side reactions to be avoided are aldol addition (31 rather than 3?

synthon), and coupling of the carbanion with its activated methylene precursor.
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We have a general program at improvement of important organic reactions, such as
Diels-Alder cyc]oadditions4'6, to make them efficient and selective at ambient tempera-
ture or below, using only low-cost reagents and materials. We latched upon the Michael
reaction, because it is one of the sacred cows of organic chemistry : should it be Teft
alone ? It is nearly a century-old (1887) : it is ample time to devise catalysts for it,

we feel.

Rational design of a catalyst has to answer the need here for a Brd#nsted base,
which could be further improved by providing it with neighboring storage areas in which
to dump the abstracted protons : we thought of inorganic supports of the metallic oxide
type, with their numerous oxygens for this ancillary role; the primary basic function

could be fulfilled, we figured, by doping them with strongly basic anionic centers.

Two solutions were evolved :

7

A. use alumina® (a solid acid which contains intrinsic basic sites already used in

8,9

aldol reactions ) and boost the basicity by adsorption of fluoride ions from KF;

B. use the new calcium aluminosilicate xonoth’te10

, a basic support also, which we
have made more basic yet by adsorption of t-butoxide ions from KOC(CHj);. The
catalyst is prepared by dissolving t-BuOK (3,6 or 9 g) in t-BuOH (200 m1); xonotli-
te (15g) is added and the mixture is stirred vigorously for 5 minutes, The flask is
connected to a rotary evaporator and t-BuOH is eliminated under reduced pressure,

on a water bath at 60°C. The catalyst is further dried for one night in an oven at

120°C; it can be stored at room temperature and is stable for several months.

Results, using both procedures, are indicated below (Table 1).



donor

acetylacetone
(50mM})

ethylacetoacetate
(50mM)

diethylmalonate
{50mM)

acetylacetone
(50mM)

ethylacetoacetate
(50mM)

diethylmalonate
(50mM)

dimedone
(10mM)

acceptor

methylvinylketone
(50mM)

methylvinylketone
(50mM)

methylvinylketone
(50mM)

acrolein
(50mM)

acrolein
(50mM)

acrolein
(50mM)

methylvinylketone
(10mM)

reaction conditions

200mg B(6/15)°,THFC ,r.t. ,4d

200mg B(3/15),THF,r.t.,3d

200mg B(3/15),THF,r.t.,3d

200mg B(3/15),THF,0°,24h

100mg B(3/15),THF,0°,24h

200mg B(9/15),THF,0°,4d

A11

50mg »THF,r.t.,3d

a. Isolated yields, except®*, from GC integration

b. y/15 = t-BuOK/xonotlite (w/w)

c. in CH2C]2, 90% yields are achieved after 20h of reaction at r.t.

Table 1 : Michael additions with catalysis by basic inorganic supports.
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y1’e1dsa

79%

70%

70%

74% %

62% %

60% *

100%

Based upon the quantity of the catalyst used, a minimum of 150 catalytic cycles are

effected. We feel that this method is a significant improvement over existing methods,

including some recent attempts at catalysis
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